一 氧化 氮 的 功能

ԭ���⣺һ������������ ��Ѫ�ܲ���ӵ��

ʱֵ����羰�续������Ѫ�ܼ���������˵ȴ���Ǹ�����Ϣ��������ҹ�²�ϴ������ڵ�ѪҺճ���Ȼ����ߣ�ѪҺ�����ٶȼ���������Ѫ������ʱ������ӳ��������շ��������Ѫ�ܼ�����

�����Ѫ�ܼ��� Ԥ����������

��Ѫ�ܼ�����Cardiovascular Disease��CVD��ָ�������ڸ�Ѫѹ����Ѫ֬�����򲡡�ѪҺճ������������Ӳ���������µ����ࡢ���Լ�ȫ����֯������ȱѪ�Ի��Ѫ�Լ������ֳ�Ϊѭ��ϵͳ��������Ѫѹ�����򲡡����̡�Ѫ֬�쳣�����֡���������ʳ�Լ���л�ۺ����ȶ���Ϊ������Ѫ�ܲ���Σ�����ء�

�����µġ��й���Ѫ�ܲ����棨2015������2014�й���Ѫ�ܲ��������Ը߾Ӽ��������ĵ���λ����������������������ÿ5�������о���2����������Ѫ�ܼ��������ͬʱ������Ѫ�ܲ�סԺ�ܷ���ҲѸ���߸ߡ�

��Ը������ʺ͸߶����Ʒѵ���Ѫ�ܼ�����һ��Ԥ���������ơ���ô��β�����ЧԤ����Ѫ�ܼ����أ�

ŵ����ҽѧ�������·��˹���������޲�ʿ����ˡ�һ�����������������������޲�ʿ������ͬ�·��֡�һ����������Ѫ��ϵͳ���źŷ��ӡ��������붯������ϸ���Ӵ�����������ɣ�������Ѫ�ܡ���ͨѪ�������á�ͬʱ��������һ��ǿ��Ŀ�����������������ڵ�����Ӧ�����������ಡ�ĸ��ʡ�

��Ѫ���Ƽ��������ɻ�����ǿʹһ������Ч������

һ������������ԭ����ʲô�أ���Ҫ�����������ݡ�һ����Ѫ���ơ��������Ѫ������һ��˫�н�������ʱ�ܷ�ֹѪҺ���������������λ��ѪҺ����·���ϵ�Ѫ�ܱ����𣬴���ѪС�����˿ڴ��������ֻᵼ�¾ֲ�Ѫ˨��һ������������⿳����ϵIJ�ճͿ�㣬�ɱ���Ѫ�ܱ���࣬����Ѫ�����ɣ�������̤̤ʵʵ�ر�Ѫ��ͬʱ��һ�������ġ���ճ�ԡ�������ֹ�������������֬�Ķѻ�������Ѫ��ϵͳDZ����в��ɱ����ѿ�У���Ԥ�����á�

�������ɻ������ɻ��������л����к������һ���������Ǻܺõ����ɻ����ռ�������ѹ�����ɻ�����ͷ����������ϸ��������֤ϸ���໥֮��Ĺ�ͨ���Ӷ����ٹ��IJ������з������Ѫ�ܼ��������ļ��ʣ������Է�ֹ������ϸ�����������ϰ���ͬʱ��һ������������ϵͳ��Ҳ�����ã�����Э������ϸ���������������ֵ�ϸ��������Ȳ�ԭ�壬���ڡ���ѹ����ϸ�����쳣���л��

һ��������ͨ������Ӫ�����������

һ�������������أ�������������Ӫ���������������������������޲�ʿ�о����֣��������Dz���һ�������Ļ������ʣ�����ֻ���ڹϰ�������ֹؼ��Ŀ���������Эͬ�����£����ܲ���������һ��������

��ˣ����������в���һ���������ؼ�Ҫ����������

��һ��������ɲ���һ��������Ӫ���������������������������һ�����������ȶ���·��˹���������޲�ʿ�뿵������ͬ�з���һ������Ӫ��������������ֿƷۡ����ֿƷ��ɾ����ᡢ�ϰ��ᡢţ���ᡢά����C��ά����E�Լ�Ҷ���Ϊ��Ҫԭ���Ƴɣ���Щ�ɷֳ��˿��԰��������������һ������֮�⣬Ҳ���а���ǿ����Ѫ��ϵͳ������ϵͳ����ϵͳ�ı������ܡ�

�ڶ�������ϡ���һ�����������ճ���ʳ����������Ϊ����һ�������Ļ������ʣ����������ڸ��������ʵ�ʳ���У����������Ӻͺ��ʵȡ�ͬʱ�������ỹ����һ����Դ���������Ρ�����ͨ�����Դ������Լ��߲˺�ˮ�������������Ρ���������ε��Dz��ˡ�ݫ�ġ��۲ˡ����ˡ����ѡ���ݮ�͸������߲ˡ����ң����ǻ����ṩά����C��άC�ܴٽ�����һ�����������ɡ�

���������������˶����ϡ�����һ�������������������˶�Ҳ�����е���ϵ�����������������Դ̼��������һ�����������ҿ��������������ɻ���һ���������ƻ����ڽ��������˶�ʱ����������һ�����ֿƷۣ��ⲻ���ܻ����˶������Ǵ���������ƣ�ͣ�����������ǵ�ȱ���������������Ǹе�������ˬ�������� ף��ᰣ�

一 氧化 氮 的 功能

(��ࣺ�����ǣ�ʵϰ������Ф��)

一氧化氮,是一种无机化合物,化学式为NO,是一种氮氧化合物,氮的化合价为+2。常温常压下为无色气体,微溶于水,溶于乙醇、二硫化碳。

中文名 一氧化氮 [5] 外文名 Nitric Oxide [5] 化学式 NO [5] 分子量 30.00610 [5] CAS登录号 10102-43-9 [5] EINECS登录号 233-271-0 [5] 熔    点 -163.6 ℃ [5] 沸    点 -151.7 ℃ [5] 水溶性 微溶 密    度 1.27 kg/m³ 外    观 无色气体 安全性描述 S17;S23;S36/37/39;S45 [5] 危险性符号 O;T [5] 危险性描述 R8 [5] UN危险货物编号 1660 [5] 

目录

  1. 1 研究简史
  2. 2 物质结构
  3. 3 理化性质
  4. 物理性质
  5. 化学性质
  1. 4 计算化学数据
  2. 5 毒理学数据
  3. 6 应用领域
  4. 7 安全措施
  1. 环境危害
  2. 健康危害
  3. 8 防护措施
  4. 9 泄漏应急处理
  5. 10 操作处置与储运
  1. 11 安全信息
  2. 安全术语
  3. 风险术语

1980年,一位科学家完成一个精巧设计的实验,并据此发表了一篇论文。这不是一件多么重大的事情,但对于一氧化氮来说却是个转折点,虽然这一年科学界并不知道那种特别的物质就是一氧化氮。

这位美国药理学家的名字叫做罗伯特·F。佛契哥特,他在著名的《自然》(Nature)杂志上发表论文,指出乙酰胆碱(ACh)的舒张血管作用依赖于血管内皮释放的某种可扩散物质。随后他们又发现缓激肽(BK)等多种物质扩张血管的作用也是遵循类似的机理,并将该物质命名为血管内皮舒张因子(EDRF)。

佛契哥特发现有一种物质可以舒张血管,这并不是他的独到之处,早在19世纪70年代,人们就发现有机硝酸酯对缺血性心脏病有良好的治疗作用,但当时并不了解其作用机理。19世纪末,在诺贝尔以研制高性能炸药(TNT)闻名和发迹的同时,人们惊奇地发现,用于治疗缺血性心脏病的硝酸甘油(GTN)竟是高性能炸药的主要活性成分,人们对此困惑不已。

既然这种舒张血管的发现并不特别,那么佛契哥特的论文为什么会引起科学界的关注呢?原因就在于他用精巧设计的实验证明了这种物质的存在。

表面上看来,佛契哥特的研究与一氧化氮并无直接关联,而是关于乙酰胆碱等血管活性物质的作用机理。1953年他发表了首篇关于乙酰胆碱和组胺致兔离体血管条收缩的论文,这与当时公认的对整体动物静注乙酰胆碱或组胺会引起血管舒张的观点恰恰相反。但他坚持自己的实验重复性良好,且观察无误,并在1955年发表的《血管平滑肌药理学》综述中提出假设,认为犹如肾上腺素能有α和β两种受体,血管平滑肌上也同时含有运动性和抑制性两种胆碱能受体——这一结论是错误的,然而在当时这一观点一直被当做权威而被认可。

接下来的问题是,为什么刺激内皮细胞可引起血管平滑肌舒张?这次似乎是单刀直入,他们首先想到的是血管内皮细胞受刺激后会释放某种物质,该种物质扩散至平滑肌并导致其收缩。佛契哥特像是受到某种特殊的启示,他回忆道:“那天早晨我刚醒来,一个漂亮的实验设计突然闯入我的脑海。于是我来到实验室,立即按照这一方案进行了实验。”实验结果被撰写成论文发表于1980年的《自然》杂志上,论文的名字是《内皮细胞是乙酰胆碱诱发动脉平滑肌舒张的必需因素》。

值得一提的是,在《自然》杂志上的这篇文章当时还没有明确提出内皮舒张因子,直到1982年,他们发表于《美国国家科学院院刊》(PNAS)上的关于缓激肽内皮依赖性舒张血管作用的论文中,才正式提出内皮舒张因子这一名词。

这篇论文在学术界引起了广泛关注,吸引了包括加州大学洛杉矶分校的伊格纳罗(LouisJ.Ignarro)教授在内的许多科学工作者从事有关内皮舒张因子的研究。内皮舒张因子是一种不稳定的化合物,能被血红蛋白及超氧阴离子自由基灭活。长期研究亚硝基化合物的药理作用的伊格纳罗与佛契哥特合作,针对内皮舒张因子的药理作用以及化学本质进行了一系列实验,发现内皮舒张因子与一氧化氮及许多亚硝基化合物一样能够激活可溶性鸟苷酸环化酶(SolubleGuanylateCyclase,sGC),一氧化氮主要通过环磷鸟苷(cGMP)途径扩张血管。

穆拉德博士的发现

20世纪50年代,环磷鸟苷作为一种天然产物标志在尿中发现,相关酶类包括作用于环磷鸟苷的合成的鸟苷酸环化酶(GuanylateCyclase,GC)、水解环磷鸟苷的磷酸二酯酶和选择性地被环磷鸟苷激活的蛋白激酶。

穆拉德博士于1970年结束了在美国国立卫生研究院(NIH)的训练后,决定将更多的研究精力从环化腺核苷-磷酸(cAMP)转移到环磷鸟苷,并着力解决两个问题:第一,激素类配基如何与它们的受体结合来调控鸟苷酸环化酶?第二,其分子偶合事件是什么?对受体鸟苷酸环化酶偶联的了解,有助于使用制剂或药物来增强或抑制激素在某些临床疾病中的影响。

在得州大学医学院,多年来一直独立从事硝酸甘油扩张血管作用研究的药理学家穆拉德博士早在1977年就发现硝基酯类药物及外源性一氧化氮均可使环磷鸟苷的含量增高,他们甚至提出硝基酯类药物可能是通过形成一氧化氮或某种活性物质来增加细胞内环磷鸟苷的含量,进而使血管扩张和抑制血小板。至此,众多研究汇聚到一个焦点——硝基类活性物质。

早在20世纪70年代,穆拉德博士与合作者就系统地研究了硝酸甘油及其他具有增强血管活性的作用的有机硝基化合物的药理作用,发现这些化合物都能使组织内环鸟苷酸、环化腺核苷一磷酸等第二信使的浓度升高。这类化合物有一个共同的性质,可以在体内代谢产生一氧化氮。1977年,穆拉德博士发现硝酸甘油等必须代谢为一氧化氮才能发挥扩张血管的作用,由此他认为一氧化氮可能是一种对血液流通具有调节作用的信使分子,但当时这一推断还缺少实验证据。

穆拉德博士在前期工作中发现,在不同组织匀浆中(包括高速离心上清液和匀浆颗粒部分)都能检测到鸟苷酸环化酶的活性。但在这两种组织制备中,酶活性的动力学特征是不同的,最显著的特征就是匀浆颗粒部分对基质三磷酸鸟苷(GTP)就活性呈现协同催化动力学,而可溶性鸟苷酸环化酶的活性被证实为典型的米曼氏动力学,这个发现提示可溶性鸟苷酸环化酶的活性代表一个三磷酸鸟苷的催化位点。尽管推测鸟苷酸环化酶有不同的亚型,但由于粗制备物也含有竞争底物或产物的核苷酸酶、磷酸酶和磷酸二酯酶而无法剔除不可靠的虚假数据,穆拉德花费了整整12年的时间纯化、验证、克隆、表达和再验证这个酶,才彻底解决了这个问题。

通过实验,穆拉德博士发现某些物质包括叠氮钠、亚硝酸盐和羟胺,能激活鸟苷酸环化酶。在不同组织包括气管平滑肌制备物中,叠氮钠、亚硝酸盐和羟胺也能提高环磷鸟苷的水平。这些环磷鸟苷水平的提高与平滑肌舒张有关,显示为直线的剂量应答关系。硝酸甘油,一种从18世纪70年代起应用于临床心绞痛的药物,也可活化可溶性鸟苷酸环化酶,在不同的组织包括气管平滑肌中提高环磷鸟苷的水平,引起平滑肌舒张。

穆拉德博士称这些不断增长的可溶性鸟苷酸环化酶激活剂名单中气管、肠胃和血管平滑肌的弛缓剂为“硝基血管舒张剂”,确信它们能被转化为一氧化氮,因为用化学法产生的一氧化氮能激活所有测试中的可溶性鸟苷酸环化酶制备物。这些一氧化氮前药物质的作用机制因此确定。

穆拉德博士提出了一氧化氮能起到调控激素和药物的细胞内信使的作用的假说,即一个自由基激活一个酶,且这个自由基是一个内源信使分子。由于被纯化的可溶性鸟苷酸环化酶的激活作用发生在纳摩尔浓度下,并且由于一氧化氮及其氧化产物亚硝酸盐和硝酸盐的测定法不敏感,在一氧化氮分析测定的新技术发展后的七八年,这个当年遭到学术界怀疑的假说才被决定性地证实和接受。

穆拉德博士表示,人体内的一氧化氮有两个来源:一为非酶生,来自体表或者摄入的无机氮的化学降解与转化;一为酶生,由一氧化氮合酶催化L-精氨酸脱胍基所产生。非酶生性的一氧化氮,大部分来自硝基血管舒张剂家族,包括硝普盐、有机或无机亚硝酸盐和硝酸盐、亚硝胺、氮芥、联氨等。比如有名的硝酸甘油和硝普钠的扩张血管、治疗心脏病的功能都是通过非酶生性产生的一氧化氮起作用的。酶生性的一氧化氮,来自于一氧化氮的前体物质,例如精氨酸。摄入人体的富含精氨酸的食物,在体内通过酶生性产生一氧化氮并发挥其生理功能。

酶生性一氧化氮产生机理(L-精氨酸在内皮型一氧化氮合酶的作用下生成L-瓜氨酸并释放一氧化氮)

穆拉德博士的研究集中于由非酶生性产生的一氧化氮的化合物对于一氧化氮合酶的影响,这不仅阐明了一氧化氮在体内扩张血管的作用机制,而且也为新型的药物和化妆品研发开辟了道路。穆拉德博士所参与的生物科技公司所应用的技术是一种能够产生一氧化氮的组合,分别为氮剂和酸剂,其中氮剂为亚硝酸盐或富含亚硝酸盐的植物提取物,酸剂为维生素C、柠檬酸等足够强度的有机或者无机酸。使用时,先清洁皮肤,涂抹适量的氮剂化妆品,再涂抹酸剂化妆品,两者缓慢反应释放出一氧化氮,渗入皮肤,提高毛细血管血流量,促进胶原蛋白的合成,从而改善肤质。

值得一提的是,早在19世纪末,德国学者格里斯(Griess)就研究和发表了亚硝酸盐的检测方法,但当时对其与一氧化氮的关系并不了解。由于亚硝酸盐是一氧化氮在水溶液中进行氧化代谢的终产物而相对稳定,改良后的格里斯法至今仍是实验室间接检测一氧化氮含量最简单、最常用的方法之一。

一氧化氮与核酸的研究

20世纪80年代,世界生命科学领域建立了“传递生命信息3个信使”的学说,即生命体的各种活动都是在3个信使体系的控制和调节下进行的。

我们都知道蛋白质与核酸等生物大分子是生命的主要体现者,但不是生命本身。生命的本质是这些生物大分子之间,以及它们之间复杂而有序的相互联系和相互作用,这是信息传递研究的基本任务。

生命信息传递的真谛,就是细胞间通讯的细胞外第一信使以及外界环境因子作用与细胞表面或胞内受体后,通过跨膜传递形成胞内第二信使的级联传递,以及其后的核内第三信使诱导基因表达和引起生理反应的过程。生命信息传递在应答环境刺激和调节基因表达、生理反应的同时,不仅维持着细胞正常代谢,而且最终决定细胞增殖、生长、分化、衰老和死亡等生命的基本现象。

传递生命信息3个信使

第一信使是指各种细胞外信息分子,又称细胞间信号分子即细胞因子,诸如内分泌激素,前列腺素,气体信号分子(NO)以及免疫细胞产生的免疫细胞因子。这些生物活性分子由体内各种不同的细胞产生后,能够通过血液、淋巴液、各种体液等不同途径,作用到细胞膜表面,引起细胞内的特定反映。

第二信使是指细胞外第一信使与其特异受体结合后,通过信息跨膜传递机制激活的受体,刺激细胞膜内特定的效应酶或离子道,而在胞浆内产生的信使物质。这种胞内信息分子起到将胞外信息传导、放大、变为细胞内可以识别的信息作用。

第三信使又称DNA结合蛋白,是指负责细胞核内核外信息传递的物质,能调节基因的转录水平,发挥转录因子的作用。这些蛋白质是在细胞胞质内合成后进入细胞核内,发挥信使作用,因而称这类核蛋白为“核内第三信使”。

所以核酸是细胞内的具有遗传功能的物质,NO属于细胞间的通讯物质,没有NO,再多的细胞无法协同工作,相互发挥作用,生命信息传递不出去毫无意义,只有两者有机结合起来才能共同承担人体新陈代谢的任务。

一氧化氮为双原子分子,分子构型为直线形。一氧化氮中,氮与氧之间形成一个σ键、一个2电子π键与一个3电子π键。氮氧之间键级为2.5,氮与氧各有一对孤对电子。有11个价电子,是奇电子分子,具有顺磁性。反键轨道上(π2p*)1易失去生成亚硝酰阳离子NO 。

一氧化氮物理性质

熔点:-163.6℃

沸点:-151.8℃

密度:1.27kg/m3

饱和蒸气压:6079.2kPa(-94.8℃)

外观:无色气体

溶解性:微溶于水,溶于乙醇、二硫化碳

一氧化氮化学性质

一氧化氮是无色气体,工业制备它是在铂网催化剂上用空气将氨氧化的方法;实验室中则用金属铜与稀硝酸反应。

NO在水中的溶解度较小,而且不与水发生反应。常温下NO很容易氧化为二氧化氮,也能与卤素反应生成卤化亚硝酰(NOx)。如2NO+Cl2=2NOCl

但NO与O2可与水反应,化学方程式为4NO+3O2+2H2O=4HNO3

根据NO的分子结构可见,它有未成对的电子,两个原子共有11个价电子,也就是个奇分子,大多数奇分子都有颜色,然而NO仅在液态或固态时才呈蓝色。NO分子在固态时会缔合成松弛的双聚分子(NO)2,这也是它具有单电子的必然结果。

这里需要特别说明的是,NO可以被过氧化钠吸收:Na2O2+2NO=2NaNO2 [2] 

疏水参数计算参考值(XlogP):0.2 [5] 

氢键供体数量:0 [5] 

氢键受体数量:1 [5] 

可旋转化学键数量:0 [5] 

互变异构体数量:无

拓扑分子极性表面积:18.1 [5] 

重原子数量:2 [5] 

表面电荷:0 [5] 

复杂度:2 [5] 

同位素原子数量:0 [5] 

确定原子立构中心数量:0 [5] 

不确定原子立构中心数量:0 [5] 

确定化学键立构中心数量:0 [5] 

不确定化学键立构中心数量:0 [5] 

共价键单元数量:1 [1] 

1、急性毒性数据

大鼠吸入LC50:1068 mg/m3/4h

小鼠吸入LCLo:320ppm

哺乳动物狗吸入LCLo:5000 ppm/25M

2、其他多剂量数据

大鼠吸入TCLo:50 mg/m3/6H/7W-I

大鼠吸入TCLo:3 mg/m3/24H/16D-C

小鼠吸入TCLo:10 ppm/2H/30W-I

3、致突变数据

细菌-鼠伤寒沙门氏菌:30 ppm。

大鼠吸入27 ppm/3H(连续)突变在哺乳动物体细胞。

啮齿动物-仓鼠成纤维细胞10 ppm突变在哺乳动物体细胞。

4、是一血液毒物,转变氧合血红蛋白为变性血红蛋白而发绀,使大脑受损伤产生麻痹和痉挛。轻度中毒时,移至新鲜空气中症状可消失。由于一氧化氮在空气中很快变为二氧化氮,后者对人体也有毒害,对肺组织产生刺激和腐蚀作用,引起肺水肿。慢性作用主要表现为神经衰弱综合症及慢性呼吸道炎症。个别出现肺纤维化。此外,还可出现牙齿酸蚀症。

5、一氧化氮能引起中枢神经麻痹和痉挛。人吸收一氧化氮会迅速氧化成有毒的二氧化氮。中毒症状和二氧化氮相同。空气中一氧化氮的最高容许浓度(折合成二氧化氮)居住区为0.15mg/m3,工作场所为5mg/m3 [1] 

临床应用

NO在常温下为气体,具有脂溶性是使它在人体内成为信使分子的可能因素之一。它不需要任何中介机制就可快速扩散通过生物膜,将一个细胞产生的信息传递到它周围的细胞中,主要影响因素是它的生物半寿期。具有多种生物功能的特点在于它是自由基,极易参与与传递电子反应,加入机体的氧化还原过程中。分子的配位性又使它与血红素铁和非血红素铁具有很高的亲合力,以取代O2和CO2的位置。据研究报道,血红蛋白-NO可以失去它附近的碱基而变成自由的原血红素-NO,这就意味着自由的碱基可以自由地参与催化反应,自由的蛋白质可以自由地改变构象,自由的血红素可以自由地从蛋白中扩散出去,这三种变化中的任何一个或它们的组合,将在鸟苷酸环化酶的活化过程中起重要作用 [3]  。NO的生物学作用和其作用机制研究方兴未艾,它的发现提示着无机分子在医学领域中研究的前景。

一氧化氮起着信使分子的作用。当内皮要向肌肉发出放松指令以促进血液流通时,它就会产生一些一氧化氮分子,这些分子很小,能很容易地穿过细胞膜。血管周围的平滑肌细胞接收信号后舒张,使血管扩张。

在泌尿及生殖系统中的作用

一氧化氮作为NANC 神经元递质,在泌尿生殖系统中起着重要作用,成为排尿节制等生理功能的调节物质,这为药物治疗泌尿生殖系统疾病提供了理论依据。

现已证明在人体内广泛存在着以NO为递质的神经系统,它与肾上腺素能神经、胆碱能神经和肽类神经一样重要。若其功能异常就可能引起一系列疾病。

在神经系统中的作用

有关L-Arg → NO途径在中枢神经系统(CNS)方面的研究认为,NO通过扩散,作用于相邻的周围神经元如突出前神经末梢和星状胶质细胞,再激活GC从而提高水平cGMP水平而产生生理效应。如NO可诱导与学习、记忆有关的长时程增强效应(Long-term potentiation,LTP),并在其LTP中起逆信使作用。

连续刺激小脑的上行纤维和平行纤维可引起平行纤维细胞的神经传导产生长时程抑制(Long-term depression,LTD),被认为是小脑运动学习体系中的一种机制,NO参与了该机制。

在外周神经系统也存在L-Arg → NO途径。NO被认为是非胆碱能、非肾上腺素能神经的递质或介质,参与痛觉传入与感觉传递过程。

NO在胃肠神经介导胃肠平滑肌松弛中起着重要的中介作用,在胃肠间神经丛中,NOS和血管活性肠肽共存并能引起非肾上腺素能非胆碱能(nonadrenergic-non-cholinerrgic,NANC)舒张,但血管活性肠肽的抗体只能部分消除NANC的舒张,其余的舒张反应则能被N-甲基精氨酸消除。

在免疫系统中的作用

研究结果表明,NO可以产生于人体内多种细胞。如当体内内毒素或T细胞激活巨噬细胞和多形核白细胞时,能产生大量的诱导型NOS和超氧化物阴离子自由基,从而合成大量的NO和H2O2,这在杀伤入侵的细菌、真菌等微生物和肿瘤细胞、有机异物及在炎症损伤方面起着十分重要的作用。

当前认为,经激活的巨噬细胞释放的NO可以通过抑制靶细胞线粒体中三羧酸循环、电子传递细胞DNA合成等途径,发挥杀伤靶细胞的效应。

免疫反应所产生的NO对邻近组织和能够产生NOS的细胞也有毒性作用。某些与免疫系统有关的局部或系统组织损伤,血管和淋巴管的异常扩张及通透性等,可能都与NO在局部的含量有着密切的关系。

心脑血管的作用机理

一氧化氮是氮的化合物,化学式NO,分子量30,氮的化合价为+2。由于一氧化氮带有自由基,这使它个化学性质非常活泼。具有顺磁性。当它与氧反应后,可形成具有腐蚀性的气体——二氧化氮(NO2)。一氧化氮在标准状况下为无色气体,液态、固态呈蓝色。一氧化氮改善心脑血管的作用机理。

一氧化氮的产生大致分为2种,一种是酶生性一氧化氮,一种是非酶生性一氧化氮。

非酶生性通过供体生成如硝酸甘油、硝普纳等临床药物产生。酶生性必须有酶的参与,同时也要有前体物质的。这种酶称为一氧化氮合酶(NOS),人体内有3种此类酶,分为内皮型一氧化氮合酶,分布于血管内皮细胞;神经型一氧化氮合酶,分布于人体神经元细胞当中;最后一种叫诱导型一氧化氮合酶,分布于人体免疫细胞当中如淋巴、T细胞当中。

一 氧化 氮 的 功能
图1 一氧化氮合成机制

其中以海洋生物为主要原料提取出来的酶一种内皮一氧化氮合酶 学术名称:“一氧化氮海洋合酶” (NOSS),这种酶的活性更高,可以在增强体内一氧化氮循环机制作用,源源不断的产生一氧化氮。但是这种酶很少见,必须是由海洋生物尖海龙、牡蛎、鱼精蛋白等海洋珍贵物种才能提取产生出来。酶生性一氧化氮的合成公式是 L-精氨酸 + NOS + O2 = NO + L-瓜氨酸, 瓜氨酸又可以通过一些列的化学反应生成精氨酸。具体可以看图1分析:

精氨酸转化机制

在血管内皮细胞里产生的一氧化氮气体,由于它是脂溶性的,所以很快渗透出细胞膜向下扩散进入平滑肌细胞,从而作用于平滑肌细胞,使其松弛,扩张血管,最终导致血压的下降!同时也会很快渗透出细胞膜向上扩散进入血液,进入血小板细胞,使血小板活性降低,抑制其凝集和向血管内皮的粘附,从而防止血栓的形成,防止动脉粥样硬化的发生。从生化角度来讲,一氧化氮是一自由基气体,携带一个未配对电子,在体内极不稳定,这一特性恰好和其它游离自由基一样。这样两者就非常容易结合产生反应。从而使体内自由基数量大大减少。由于一氧化氮本身的合成需要一氧化氮合酶(NOS)的参与,但是正常情况下NOS的活性很低,需要硝基类药物或者皂甙类活性物质的激活。因此一氧化氮最佳的产生效果是和人参皂甙类物质一起协同作用。

一氧化氮与人体功能

一氧化氮广泛分布于生物体内各组织中,特别是神经组织中。它是一种新型生物信使分子,1992年被美国Science杂志评选为明星分子。NO是一种极不稳定的生物自由基,分子小,结构简单,常温下为气体,微溶于水,具有脂溶性,可快速透过生物膜扩散,生物半衰期只有3-5s,其生成依赖于一氧化化氮合成酶并在心、脑血管调节、神经、免疫调节等方面有着十分重要的生物学作用。因此,受到人们的普遍重视。

NO生物活性的发现

医学知识告诉我们,有两种重要的物质作用于血管平滑肌,它们分别是去甲肾上腺素和乙酰胆碱。去甲肾上腺素通过作用于血管平滑肌细胞受体而使其收缩。对于乙酰胆碱是如何作用于血管平滑肌使之舒张,其途径尚不清楚,医学界一起在致力于研究。

1980年,美国科学家Furchgott 在一项研究中发现了一种小分子物质,具有使血管平滑肌松弛的作用,后来被命名为血管内皮细胞舒张因子(endothelium-derived relaxing factor,EDRF)是一种不稳定的生物自由基。并进入相邻平滑肌细胞,在平滑肌细胞内,EDRF激活鸟苷酸环化酶,导致cGMP水平升高,cGMP激活PKG,使平滑肌松弛,然而,EDRF被确认为是NO。众所周知,硝酸甘油是治疗心胶痛的药物,多年来人们一直希望从分子水平上弄清楚其治疗机理。研究发现,硝酸甘油和其它有机硝酸盐本身并无活性,它们在体内首先被转化为NO,是NO刺激血管平滑肌内cGMP形成而使血管扩张,这种作用恰好同EDRF具有相似性。1987年,Moncada等在观察EDRF对血管平滑肌舒张作用的同时,用化学方法测定了内皮细胞释放的物质为NO,并据其含量,解释了其对血管平滑肌舒张的程度。1988年,Polmer等人证明,L-精氨酸是血管内皮细胞合成NO的前体,产物是瓜氨酸和NO,过程由NO合酶催化,从而确立了哺乳动物体内可以合成NO的概念。 [4] 

一氧化氮环境危害

危险特性:具有强氧化性。与易燃物、有机物接触易着火燃烧。遇到氢气爆炸性化合。接触空气会散发出棕色有酸性氧化性的棕黄色雾。一氧化氮较不活泼,但在空气中易被氧化成二氧化氮,而后者有强烈腐蚀性和毒性。

该品不稳定,在空气中很快转变为二氧化氮产生刺激作用。氮氧化物主要损害呼吸道。吸入初期仅有轻微的眼及呼吸道刺激症状,如咽部不适、干咳等。常经数小时至十几小时或更长时间潜伏期后发生迟发性肺水肿、成人呼吸窘迫综合征,出现胸闷、呼吸窘迫、咳嗽、咯泡沫痰、紫绀等。可并发气胸及纵隔气肿。肺水肿消退后两周左右可出现迟发性阻塞性细支气管炎。一氧化氮浓度高可致高铁血红蛋白血症。慢性影响:主要表现为神经衰弱综合征及慢性呼吸道炎症。个别病例出现肺纤维化。可引起牙齿酸蚀症。

环境危害:对环境有危害,对水体、土壤和大气可造成污染。

燃爆危险:该品助燃,具刺激性。

一氧化氮健康危害

一氧化氮是宇航员晕厥发作的元凶

一氧化氮的过量产生会使血管扩张,这样就可以解释为什么宇航员在太空飞行之后会产生晕厥,以及可以解释许多陆地上发生的类似现象。

这种太空中宇航员经历的微重力现象,很象太空中的宇航员或长期久卧在床的病人马上要起来时的感觉,这时人们会产生过多的血管扩张剂——一氧化氮,从而导致血压降低,流往头部的血液减少,出现晕厥。

在对大鼠的试验中,加州大学的研究人员发现,低重力环境下,大鼠产生一氧化氮的两种酶增多,而且,给予大鼠药物抑制其中一种酶时,它们的血压升高,这给研究人员一个提示:抑制一氧化氮对宇航员和长期卧床患者的晕厥是一种有效的治疗。这份研究报告发表在7月份出版的《实用生理学》杂志上。

在我们正常的直立的生活中,重力使血液流往下肢,因此身体下部的血管收缩以确保有足够的血液流往相反的方向。在低重力环境下,人全身的血压一样,当宇航员返回地球时,他们身体下部过度舒张的血管使头部血压急剧下降,于是在站立时,不可避免地要晕倒。

人们看到宇航员登陆后轻松地大步行走,是因为他们穿着加压的衣服,能保持健康的血压。但是,他们的衣服只能穿这么久,而适应重力需要一段时间。

研究人员说:"长期卧床的患者其情况与宇航员相似,好像不受重力的影响。因此,在试图站立时会晕倒。"

工程控制:严加密闭,提供充分的局部排风和全面通风。提供安全淋浴和洗眼设备。

呼吸系统防护:空气中浓度超标时,佩戴自吸过滤式防毒面具(半面罩)。紧急事态抢救或撤离时,建议佩戴空气呼吸器。

眼睛防护:戴化学安全防护眼镜。

身体防护:穿透气型防毒服。

手防护:戴防化学品手套。

其他防护:工作现场禁止吸烟、进食和饮水。保持良好的卫生习惯。

迅速撤离泄漏污染区人员至上风处,并立即隔离150m,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿防毒服。尽可能切断泄漏源。合理通风,加速扩散。喷雾状水稀释、溶解。构筑围堤或挖坑收容产生的大量废水。漏气容器要妥善处理,修复、检验后再用。

操作注意事项:严加密闭,提供充分的局部排风和全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防毒面具(半面罩),戴化学安全防护眼镜,穿透气型防毒服,戴防化学品手套。远离火种、热源,工作场所严禁吸烟。远离易燃、可燃物。防止气体泄漏到工作场所空气中。避免与卤素接触。搬运时轻装轻卸,防止钢瓶及附件破损。配备相应品种和数量的消防器材及泄漏应急处理设备。

储存注意事项:储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。应与易(可)燃物、卤素、食用化学品分开存放,切忌混储。储区应备有泄漏应急处理设备。

运输注意事项:铁路运输时须报铁路局进行试运,试运期为两年。试运结束后,写出试运报告,报铁道部正式公布运输条件。采用刚瓶运输时必须戴好钢瓶上的安全帽。钢瓶一般平放,并应将瓶口朝同一方向,不可交叉;高度不得超过车辆的防护栏板,并用三角木垫卡牢,防止滚动。严禁与易燃物或可燃物、卤素、食用化学品等混装混运。夏季应早晚运输,防止日光曝晒。公路运输时要按规定路线行驶,禁止在居民区和人口稠密区停留。铁路运输时要禁止溜放。

一氧化氮安全术语

S17:Keep away from combustible material.

远离可燃物料。

S23:Do not breathe gas/fumes/vapour/spray.

不要吸入气体/烟雾/蒸汽/喷雾。

S36/37/39:Wear suitable protective clothing, gloves and eye/face protection.

穿戴适当的防护服、手套和眼睛/面保护。

S45:In case of accident or if you feel unwell, seek medical advice immediately (show the lable where possible).

发生事故时或感觉不适时,立即求医(可能时出示标签)。

一氧化氮风险术语

R8:Contact with combustible material may cause fire.

与可燃物料接触可能引起火灾。

参考资料
  • 1    一氧化氮   .物竞数据库[引用日期2017-11-03]
  • 2    过氧化钠与一氧化氮、二氧化氮反应探究   .中国知网
  • 3    血管壁和内皮细胞功能的检查   .中国期刊网[引用日期2016-01-05]
  • 4    查锡良.生物化学(第7版):人民卫生出版社,2010:374
  • 5    氧化亚氮   .化源网[引用日期2022-08-19]